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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE KNO. 3&l.

CRIPPLING STRINGTE OF AXTIALLY LOADED RODS.*

By

Fr. Natalis.

Let:

Py = the load at the time of crippling in kg.

E = the modulus of elesticity in kg/om=

F = the cross-section of the rod in cm®

1 = the length of the rod in om

J = the moment of inertia of the cross-section in om*

i = Jd  the radius of gyration of the cross-section
F in em, (J = i®F).

% = the slendemmness ratio of the rod.

k = %k the mean unit compressive stress at the moment

of crippling in kg/cm?®

ko = the ultimate compressive stress of the material
in kg/cw

M > 1 the safesy factor.
P = the allowable load in kg., (P = mP).

According to Euler's formula, we have:

< . 2 - 2 3 N\ 2
P = BBk = nip (1) B =I5 () (1) -
) o}

* Translated from Technische Berichte, Volume III, Fo. 8, pp. 307 -
217.



-3 -

These fommulas hold good only for slenderness ratilos 11_ > 105.

However, a series of empirical formulas Have been developed for
1.
T < 105. They govern, however, only a limited range of % values,

as for example, the formula of Tetmajer:
- _ .t LN I3
k =%y [1 a;-_f-b(i) ], for 10 < £ < 105

and the formulsg of Ostenfeld:

'

* 2 :
x = kg El—c@—) }, for £ < 185

both of which give too large dimensions. Further, the formula of
Schwarz-Rankine:

-k
k= 2 ; \e @)
1l +a
) (1 /
If in this formula we put a = fﬁk—zﬂﬁ, so that
k
k = 0 ~
K i~2
—_—n (L
1+ =% (1'/

then it covers the entire range of -}T from 0 to «, and gives

correct results fpr the extreme value of ;._11= 0 and «, inasmuch

-

as for cases in which

and when
1 2
-_—= D * = 2 i
T t k= ME (f} ,

acin Euler's formula, but Jor the inteimediate values of % it
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zives too large a factor of safety; for example, for

i_ /OE -
i - 4 ko k1 - 0’5 ko
C ™ F . )
The vaglue i % hes for the lsber consideration g spec-
o)

ial significance, for it is the ordinabte for the point of intersec-—
tion of the straight lines k = k, and the Euler's cuxve

2
k= 7°F (%)

L1 1TzEbzw.—.?'-'jf' Ea_ =1 (3)

i ko i L i

it is therefore an important unit of measure for the slenderness
with respect to the chargeteristics kg and E of the material.

In the case of :7_;_1____/'}%%’ for which the Schwarz-Rankine
formula gives %k, = 0.5 k,, experimental investigations have deter-

mined: a value of %k, = 2 kg for both wood and steel.

3
Table 1 containe the values of ikg foredifferent values of
L/ x
7/ 775, according to Schwarz-Rankine and Euler's formulas:
Tapble 1.
1 /% . . . : Slender-
T/ 7% - - - = {0-85] 0.50; 0.75 ; 1.0 : 1.85 @ 1.50° oo 7Ok
) : . *__rod.
X 1 P . . . . ) . Schwars-
= #1 TTE L7 *0.94: 0.80: 0.64 : 0.50:.0.39 : 0.81: poya
=E(y) 1 P P
< s 2 . M < M : M .
E - T°E AN+ owlzas | ooo 1(1.79): 1.00: 0.64 : 0.44: Euler
ko  Xo . : X : : ) :

- - IS
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Table 1 {(Contd.)

1 k
=/ w5 e oz - : : : : : :Slender-
< E :1.'?5: 2.00: 3.85 . 2.50: 3.75 :3.0 ‘ness OFf
rod.
X = 1 = ° : : : : : :
ko 1 k L .2 h :0085, 0120, 0017 . Oo14:. 0-13 _O.]_O .SChWa,I‘Z“'
+ 0. /L . . : ) ) X .Rankine

K (i /\l ) : : : : : :

= *0.33 0.35° 0.30 ' 0.16° 0.13 ‘0.1l ‘Euler

In the following, a new formula will be derived. I% corresrondr

[
t0 a curve of k.—]f— valid for the entirw range of T and coinciding
at the beginning £ = 1 with the Schwarz—Rankine and 2t the end

ko
with Euler's curves, and gpproaching closely during the wnole range

of the experimental investigatiors on strength of rods of different
length and constant cross section.

As the formula should give seame 1—}- values for positive and
o

negative 1 the slenderness ratio :_ZL. mist arpear in it only in even

powers.

The formula must re therefore of the form:
"-‘2.
1 +a (—i-\

»
i

k j 2
o l+b(-&-\+c(7\

‘L 4 (4-)
.‘l l-"

1 14
For very small 3 values, € (g_—\ becomes negligible compared
2 s

A
0 b (5_—\ . If therefore, abt the beginning the curve approachss txs
line k£= 1, then

o

.L 2
1 +a.(=->
i =1
/3
+ £\
1 b\_:./
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necessitating b = a. If, on the other hand, for very large values
of _;1:-, the curve is to agrese with that of Euler, then the lower

A
powers of T must vanish. Therefore,

2
a(lf) = T2 E ,iN?
c(—j?.'?)q' kg (T?

k
whence o = g T—TzQ-E- The formula becomes therefore now

k 1 +a.(-z'—\2
k. = K NG (s)
1 +a,(1> + a nTQ_ E({E>

In order to determindnow the value of a it will be assued

- ————

that the new curve cuts Fuler's curve at the abscissa 7&—= n J %=

where n is any number greater than 2, (n 2 23).

Then -
(1\2 e K, -
n® M E
2
2 T_E
_ 1 + an ——kn
2 =2
1 + an® T{{OE+an4—'z°-—(ﬂE
2 szE
_’;a&= 1 +an "
n” 72

‘1 + an® koE (1 +2a®




z e E :
an 2 (1 +n® -5®)=1n° -1
ko
g = _Xo n® - 1
T E n=

The formula then becomes:

1 4 (6)

If, for example, the curve is to cut Buler's curve at the ordi-

1 2
nate = =2 /L then n=2 and
1 ko
3 k N
i - e LI R R (7)
0 3 _ 2 1N L3k 2
L+i 5% (3 +1(7%) (1)

it should be noted that the new formula will give larger values

l -rl-a-n .
taan Euler's for T between 2 T £ and . This is however un-
(e}

objectionable, as the disagreement will not exceed 5%.
Further, it is evident that the point of Intersection of the
new curve with thabt of Euler's can be moved very far off, that is,

n can be chosen very large withoubt essentially diminishing the val-
e

ues of T in the central region of the curve and that the latter
o
then will agree still better with the test results. Further, 1f onc
2
sonsiders that the new curve which cuts Euler's at %-= n ik E
0

will touch it at infinity, then the condition can be made, that also
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that also the first interzection point iz moved off So infinity; in
othsr woxrds, that the new curve has th¥ee points in common witha
Eulerts at infinity.

From this follows a simpler and for practical spplications es-
peolally useful formuls (for n up t0 infinity):

E—-—: = (8)

3 +'_EQE‘ 1\2 - <_§n_\ ( 1 +4+4

i+ 4
1 + A + A®

P = k F = kF

k 13

where A = EEQE-(T>
This formula is furthsr distinguished by she fact that it con-
tains no empirical constants but only the characteristics k, and

E of the material.

Table 3.
i / k . .
i '—'Q—" . . LY . 0 n . :..".0185 : 0150 : 0.75 N lvoo : 1-25 M 1-50
iv a2 E :
fﬁ according to Euler . .=% —- 1 -—— :(1.,79):-1.00 : 0.84 : 0.44
o} . . . . .
fi according to equation : : : : :
-0 7 (n=2) =:0.995¢ 0.963: 0.858: 0.700: 0.545: 0.415
h—.ancOrding to equation ; ; ; ; ; :

ko 8 (n= o) =30Q.995: 0.955: 0.835: 0.857: 0.513: 0.3923
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Table 2 {Contd.)

% o
3.1- —Q_ . .. .. . .= :1.75- 2.00 : 2.35 : 2.50 : 8.75 : 3.00

X according to Euler .= 0,33 ! 0.35 : 0.30 : C.15 ¢ 0.13 : 0.11

»
.

X . : : : : : :
ko 2o°9rlre 5y SquebioR_ :0.318: 0.350: 0.300: 0.163: 0.135: 0.113

- . .
- ’

T aQQOrsﬁng to equation : : H : : :
o 8 (n =w) = ;0.303: 0.338: 0.190: 0.153: 0.130: 0.110

For different values of

lfk =fk « F 12
iv n® E ™ B J

there ars grouped in Table 3 the values of }-}- .
| o

Fig. 1 shows the curves of k—k— plotted from formula (§) and
©

from these of Euler and Schwarz-Rankine. In oxder to verify the nsw

formula a series of pine rods, 4 x 4 cx.® and of different lengths
wes tested.
The material selected was as unifomm as possible. Taking

F=18cm?, J=21.3 cu*, 1i=1.15 cm. and E = 130,000 kg/om¥
the results of tests were computed in terms of -7'. --E-QE and £

L rr kq
and plotted in Fig. 1.



Table 3.

1 : k . : i k : X

i : kg/cm .2 : 1 me B - o

o} Ce 535 .. .0.000 : 1.000

7.5 523 : 0.152 : 0.998
10.1 : 534 : 0.204 : 0.997
16 : 508 : 0.324 : 0.568
30 : 479 : 0.405 : 0.913
29 i - 478 : 0.587 : 0.908
38 : 430 3 0.720 : 0.820
46 : 363 : 0.933 : 0.8%0
(49. 4) o (350) : (1.09) : {0.887)
54,5 ;- 309 : 1.10 : 0.589
83.5. : 244 : 1.29 : 0.465
71.5 : 218 : 1.45 : 0.418
(74) : (208) : (1.50) : (0.392)
80 : 187 : 1.62 : 0.357
87.5 H 145 s 1.78 3 0.276
(98.5) : (125) : (2.00) : {(0.338)

In Table 3 there are included further (in brackets) the calou=
lated results for %- / E§9§ = 1.0, 1.5 and 3.0:

As can be seen from Fig. 1, the test resulits agree well with t¥
curve from formula (8). That the test results do not give an entire
ly smooth curve, is not surprising at all, as in such compression
tests slight differences in mabterial and its uniformity exert a con-
siderable influence.

For a material of unknown properties it is sufficient to maxe
?wo tests 5;1y, in oxder to detemine the characteristics k, and E:
one compression test of a short rod giving the ultimate compression
strength ¥y and one bending test of a horizontal rod, freely sup-
ported at the ends and loaded in the éenter, giving E = é%- %g
from the known load Q in kg. and the observed deflection f in om.
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The results of anothser similar series of tests are given in
Table 4. They refer to hollow square sectioned rods and are calcu-
lated for k, = 535 kg/om®, E = 130,000 kg/om?, T = 7,94 cu:®,
J = 15.2 om.*, and i = 1.4l om. Their dimensions and the curve of
the test resulis in comparison to the curve given in formula (8)

are shown in Fig. 3.

Table 4.

L k L fJe X

i kg/ qom . i ™ E : k¢

o . 525 : 0.000 : 1.000
13 : 519 : 0.264 : 0.9898
31 : 448 : 0.638 : 0.855
(49.4) : (250} : (1.000) : {0.887)
52.8 : 407 : 1.057 : 0.775
(74) : (206) . (1.50) : (0.292)
77 : 337 H 3.540 : 0. 453

From tests of drawn seamless steel tubeé, manufactured accord-
ing o the standards of the Army Air Service Inspection (Idfiz)*
Table 5 and Fig. 3 were established, showing that formula (8) holds
also for other materials. In these tests specimens 30 mm. in diam-
eter and of varying length were used; tbe wall thickness varied be-
tween 0.79 and 1.18 mm. The wall thickness of individual tubes was
not quite uniform, varying, for example, from 1.03 to0 1,18 mm. Thi
should explain the irxegularities of the curve in Fig. 3.

* mIdflz" means probably, "Inspektion der Flugzeugt ruppen. ®



Table B.

L k : 1 [ ¥ : X

i kg/ gom. : i v m*E : ko
11.20 : 5235 : 0.283 : 1 005
13.15 : 5153 : 0.313 : 0.998
15,10 : 4788 : 0.245 : 0.920
18.03 : 5203 : 6.293 : 1.001
20.96 : 4930 : 0:340 : 0:948
24.86 : 4720 : 0.403 : 0.908
37.79 : 4918 : 0.450 : 0. 948
32.66 : 4984 : 0.5%0 : 0.557%
37.54 : 4500 : 0.608 : 0.865
43.42 : 4841 : 0.687 : 0.930
51.80 : 4850 : 0.840 : 0.933
81.56 : 3541 : 0.998 : 0.682
(61.70) : (3470) : (1.000) : (0.687)
71.33 : 3084 : 1.156 : 0.53%
81.08 : 2698 . 1.314 : 0.513
90.83 : 2023 : 1.473 : 0.2383
(92.55) : (20223) : (1.800) : (0.3289)
100.6 : 1855 : 1.€30 : . 218

The value ko = 2285 29198 - ppproximately 5300 kg/om?  is

the mean value Ontained from the compression test of the two shorte:
tubes. The value E = 3,000,000 kg/cm.® of the modulus of elastic
ity is the average of the bending tests of two Tubes, which gave
3,041,30C and 3,008,370 kg/cm.? respectively (average 3,025,000)
and of two compression tests giving 1,990,000 and 1,370,000 kg/cn.?

respectively (average = 1,980,000). The calculations were also

s /g
based on - F = 0.911 em.2, J = 0.959 om.*, i ==J/§- = 1.035 ca.,
' l k
so that 7 = 61.70 and + /—a =1,
iz E

In the foregoing calculations, besides %k, and E, +the value

0
of F, J and 1 are assumed to be known and from them Xk and Py= mP

are caloulated; frequently, however, ¥k, and E also P = mP and 1



are given and F and J are to be calculated.

In order to simplify such calculations, Tables 6 t0 8 can be

uségd.
Table 6.
Soiid Sguare Grosg-Secsion Pine.
4
_ F=h en2: J= :"l._p.m-.é!i= _.cha ne: i = h h om.
3 ’ P13 /12 3.47
g
4 ko = 535 —X& ; E = 130000-£E
. ' am® . om®
be—p —
F 1 \?
1 + 4.09 & (=Y -
mP = 525 F _ J (100/ Xg.
1+ 4.090 BN 4 racoe E AN
+ 4095 (155) + [409F (105 ]
h :F: J d i 1 =
: : : B o :
cm:em®: cm* : om®; em : O 30 : 40 60.: 80 100 13C
- : - mP =
H : : . 000
2: 4: 1.33:0.33:0.5%77- 2.10: 1.81: 0.91: 0.45:.05863: 0.171:0.12
3 8: B,75:0.75:0.8685: 4,73+ 4.55: 3.38: 3.06: 1.87 : 0.846:0.5¢
4: 16: 21.3 :1.33%:1.,15 : 8.40: 8.88: 7.83: 5,33: 3.65 : 3.53 :1.3z
5: 25: 52.1 :2.08:1.44 :13.1 :13.0 :13.2 :10.1 : 7.73 : B.70 :4.3¢
6: 36:108 +3.00:1.73 :18.2 :18.9 :18.3 :18.3 :13.4 :10.68 :8.3C
T: 48:200 4.08:2.C3 :25.7 :25.7 :85.8 :83.5 :20.6 :17.1 :13.¢
8: 84:340 5.%33:3.81 :35.8 :53.6 :3%.2 :31.7 :88.9 :85.8 :381l.:
9: 81:547 8.75:2.60 :43.5 :43.5 :43.3 :40.9 :38.4 :34.5 :30.z
10:100:833 :8.43:2.88 :53.5 :B2.4 :53.1 :51.1 :43.8 :45.28 :40.¢
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Table & (Contd.)

Solid Sauare Cross-gection Pine.

— ————

4 2
F=hr cm?; J = h* cm® J - -h—-CIﬂz; i = h _ n cin.
iz F 12 J 12 Z.47
7 B
/ £ = 2 k = 193 k »
Z k, = 535 285 ® = 130,000 B
i t
e by = ]
1 + 4.09 .f‘% (1(1)0\
mP = 535 F ) : .
z F
1 + 4.09 (i———oo\ + [4.09 3 &0-5>]
h* ¥F:dJ = J * 1 ¢ ' ol o=
: P .

e o’ om® om®: om - 140 : 160 : 180 : 30C : 330 : 340 : 360 : 380

=]
g
!

: : : : 1000
3: 4:1,33:0.33:0.577:0.087:0.0687:0.053:0.043:0.035:0.030:0.0235:0.032
3: 9:6.75:0.75:0.865:0.444:0.338:0.266:0.216:0.180:0.151:0.138:0.111
4: 16:81.3:1.33:1.15::1.37 :1.08 :0.836:0.680:0.563:0.473:0.404:0.34¢
5: 85:53.1:3.08:1.44 :3.32 :3.53 :3.087:1.64 :1.36 :1.15 :0.980:0.842
6: 33: 108:3.00:1.73 :6.41 :5.08 :4.13 :3.38 :2.81 :2.37 :2.03 :1.76
7: 439: 300:4.08:3.02 :11.2 :9.08 :7.41 :6.10 :5.13 :4.35 :3.72 :3.23
8: 64: 340:5.33:3.31 :17.6 :14.8 :12.1 :10.1 :8.54 :7.31 :6.37 :5.45
9: 81: 547:6.75:2.60 :35.8 :21.9 :18.5 :15.6 :13.3 :11.5 :9.83 :8.85
10:100: 833:8.43:3.88 :35.7 :30.9 :86.8 :83.8 :119.6 :17.0 :14.8 :13.0



kg.

]2

/
:130 :140

\2

s

+ [4.09% (

i
100

+
: 80 :100

N

\2

—

100

/

: 40 : 60

i

525 kg/om®; E = 130,000 kg/om®

F
J

t 30
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Table 7.
kO

1 + 4.09

1442070
0818 [

s 2 2 O
1346111

3674435

..b83375_.0
453 » ¢t * 8

y 2O
2471112

6%71&.09
v

[ -1481

3581118

6964_681

3681*112

6905733
QOID~ » ¢ 4 v
» 01482
4681113

015732

T A b © <

471_0826

» [ 3 ¢ ¢ v

1183333

Hollow Sguare Cross—8ection Pine.

3345667

..:4567&90




Holl

- 15 =

Taple 7 (Contd.)

F=p -

ow Square Cross-Section Pine. e
2 2 _H* - n* 4+ J_EH 1n°
h cn , J B s [ N ¥ S, .
; 13 B 12 9
- 2
i-= Ei—fég— cm;

ko = 535 kg/cm?; E = 130,000 kg/om?

—tH —»
. T+ 4,09 £ /LN
mP = 535 F J (_1001 kg.
1 +4.09 £/ v pa09 E (o 1
_ J " 100 : J \100
+ h - . . 8 -
H; h : F o J T F i 1 =

cm‘cm: cm®" cm”” om

2. 43 2.

cm C 180 : 180 : 800 : 330 : 240 : 260 :880

4:3.8:8.16:16.3:1.98
5:3.6:12.0:38.2:3.17
6:4.4:16.6:76.8:4.33
7:5.2:123.0: 141:8.423
8:5.0:28.0: 333:8.34
8:3.8:34.8: 368:10.6
10:7.8:43.2: 455:13.3

In Table 8, only
tube diareter. As F

walled tubes, therefo

mP_ _
1000

791:0.631:0.514:0.434:0.360:0.309:0.3%
80 :1.44 :1.18 :0.989:0.834:0.715:0.61¢
39 :2.79 :2.32 :1.95 :1.68 :1.43 :1.23
.74 :4.84 :4.08 :3.47 :3.97 :2.56 :2.34

65 :7.45 :58.40 :5.50 :4.76 :4.14 :3.83
:12.8 :10.7 :9.43 :8.33 :7.81 :6.33 :5.5%8
:16.4 :14.7 :13.3 :11.7 :10.3 :9.17 :8.13

one value of wall thickness was taken for eact
and J are nearly proportional to & for thin

re the strength of the tubes is practically

proportional to the thickness of the wall and can be easily estimatb

ed for other thicknesses from the values of the table.
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Table 8.
Seamless Steel Tubes, Aymy Air Service Inspection Specification.
4
F=z (00 -d®) = 8(D-8)om? J = 73 (0 - a*)ou";
J_D° +&° . '
'f‘—lér__ﬁ’“?il:% D® + d°® cm;
ko = 5330 kg/em®; E = 3,000,030 kg/om®
F [
1 + 2‘ 83 I o~
= 5300 F - J (100) kg.
A 1 2
1 +2.63 L /2 z B ot
ki (100) +[3.82 5 (100)3
D:d: & F J J ‘i 1 =

: F
cm zcm em © em® 1 oom®* C em® T oom O . 35 . 50 .75 106 . 125

: : . 2. =

Do \ 1000
3.0:1.8:0.1 :0.597:0.270:0.453:0.673:3.10:2,85:1.67:0.889:0.523:0.338
2.5:3.3:0.1 :0.754:0.544:0.733:0.850:3.92:3.76:2.74:1.65 :1.03 :0.E873
3.0:8.8:0.1 :0.911:0.959:1.050:1.035: 4 74:4.583:3,64:2.60 :1.7C :1.15
3.5:3.3:0.1 :1.068:1.545:1.444:1.203:5.55:5. 49:4,.83:3.87 :3.55 :1.%8
4.0:3,8:0.1 :1.225:2.331:1.90 :1.38 :6.37:6.33:5. 84:4,75 :3.54 :3.57
4.5:4.2:0.15:3.050:4.854:2.37 :1.54 ;10.6:10.6 10.0:8.60 :58.73 :5.08

E : : : : : : 1 =

0 :150 :175 :"200 : 225 : 350

. : . : P -

: : : : : : 1900 .
5-0:4.7:0.15 2.286:5.736:2.95 -1.72 :11.9:5.10:3.97:3.17 :3.54 :2.08
5.5:5.2:0.15:3.531:9.027:3.58 :1.89 :13.1:6.47:5.13:4.13 :3.36 :3.76
6.0:5,6:0.2 :3.644:15.34:4.20 :2.05 +18.98:10.4:8.30:6.80 :5.55 :4.€0
7.0:6.8:0.2 :4.2373:24.73:5.79 :83.41 +92.2:14,7:12.3:10.23 :8.54 :7.16
§.0:7.8:0.2 :4.€01:37.30:7.60 :2.76 :25.5:19.0:18.5:14.1 :13.1 :10.3
$.0:8.8:0.8 :5.529:53.55:9.68 :3.11 :28.7:33.3:20.9:18.4 :158.0 :14.0
0.0:9.8:2.27:6.158773-385713.0 :3.47 35.8:283.7 :30.2 117.9

+32.0:37.5:



- 17 -

Table 8 (Contd.)

Seamless Steel Tubes, Army Air Service InspecfionAggecificg;ion.

(0° ~d®) =% 6(D - &) om?; J =g (D* - d")on®

2 o 2
= Q____Q— cm3; i = % v D® + d°® om:

16

| L

W
Q
i}
U1
AV
Q
(@]
&
[¢]
=
Ny
=3
{t

2,000,000 kg/cm2

cm ‘om * eom ‘ em® C oem* ‘ em®  oem ° 150 : 175 : 2300 : 2335 : 250

~

SR : : : : : wP

: : : : : Y 1000 .-
3.0:1.8:0.1 :0.597:0.870:0.453:0.673:0.837:0,174:0.134:
2.5:2.3:0.1 :0.754:0.544:0.7233:0.850:0.473:0.348:0.,388:
3.0:2.8:0.1 :0.911:0.959:1.050:1.035:0.828:0.609:0.469:0.3723:0.301
3.5:3.3:0.1 :1.088:1.545:1.444:1.203:1.28 :0.972:0.751:0.596:0.485
4.0:3.8:0.1 :1¢225:2.331:1.90 :1.38 :1.89 :1.43 :1.12 :0.894:0.7357
4.5:4.2:0.15:2.050:4.854:2,37 :1.54 :3.78 :2.94 :2.30 :1.85 :1.51

S L=

: : : : . 275 ¢ 300 ' 335 ' 350 ' 375

: : : : : : . mP
5.0:4.7:0.15:2.286+6.726:2.95 :1.738 :1.73 :1.46 :1.24':1.08 :0.9845
5.5:5.3:0.15:8.531:0.037:3.58 :1.82 :2.30 :1.94 -1.87 :1.44 :1.26
2.0:5.6:0.2 :3.844:15.34:4.30 :3.05 :3.87 :5.28 :2.82 :2.43 :3.13
7.0:6.6:0.2 :4.873:24.723:5.72 :2.41 :6.06 :5.18 :4.47 :3.89 :3.40
5.0:7.6:0.2 :4.901:37.30:7.60 :3¥76 :8.83 :7.53 :8.80 :5.74 :5.08
9.0:8.6:0.28 :5.529:53.55:9.88 :3.11 :12.1 :10.5 :9.30 :8.06 :7.21
0.0:9.6:0.2 :6.158:73.95:13.0 :3.47 :15.7 :1%.9 :12.3 :10.8 :9.65
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Tgble & (Contd.)

Seamless Steel Tubes, Armv Air gervice Inspection Specification.

F=g 0 -d&)=n6(-5) cr® ; J=6—T;- (D* - a*)om*;

2
=22—-i-%-—d——cm2;i=%./D2+ om:

k, = 5300 kg/ome2; E = 3,000,000 kg/cw?

|y

F o, 1
1 +2.63 T (175
mP = 5300 F 7 (105)
83 £ 2.63 =
-1 +3.83 (loo\ + [3.63

kg.
(100

D:da: & : F ¢ J 8 1 1 ¢ 1=

cm C om’ om C om® ' om4 C om® C om -.375 : 30GC : 335 : 350 : 375

: : : : : : _mP

: : : : : 1000
2.0:1.8:0.1 :0.587:0.370:0.453:0.875: H : : :
2.5:8.3:0.1 :0.754:0.544:0.733:0.850: : : : :

' 3,0:2.8:0.1 :0.911:0.859:1.050:1.035: : : :
3.5:3.3:0.1 1.068 1.545:1.444:1.203:0.400: O 339: :
4.0:3.8:0.1 :1.225:2.331:1.90 :1.38 :0.605:0.508:0.433:0. 375 0.336
4£.5:4,2:0.15: 8.050 4. 854Ia‘37 t1.54 :1.85 l.C6 :0.904:0.778: O 682

: : : : : : : SR

. . A . . . 400 : 435 : 450 : 475 : 500
: : : : : WP _
T 1005

l 5.0:4.7:0.15:3-286:6-726:8.95-31 72 :0.830:0.7358:07.658:0.580:0.534
5.5:5.2:0.15:2.531:9.0237:3.58 :1.89 :1.11 :0.983:0.883:0.791:0.713
3.0:5.6:0.8 :35,644:15.34:4.20 :3.05 :1.88 l 68 :1.437":1.34 :1.81
7.0:6.8:0.8 :14.373:34.73:5.79 :3.41 :3.00 L8% :8 59 :2.15 :11.84
8.0:7.6:0.2 :4.201:37.30:7.80 :8.76 4,47 53.99 +3.58 :3.228 :2.%91

w $.,0:8.8:0.3 :5.529:53.55:9.68 :3.11 :£.35 :5.868 :5.09 :4.80 :4.15

10.0:9.8:0.3 :8.158:73.25:12.0 :3.47 :8.58 :7.37 :8.,95 :6.30 :5.88
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GRAPHICAL DETERMINATION COF CRIPPLIiIG LOAD.

In formula mP = kF = ki, ko and F are known and kL de-
o

pends on .il_and kl only. During the derivation of formula (3) it

0 . k —_
was pointed out that the expression %= /_243— =1 = 0A (See Fig.
< E

is an important unit of measurement for the slenderness of the rod

and wakes it possible to read off the values of -E]-‘- for all values
0

of _5:_ and for 21l nmaterials from a single curve.

If the crippling load for any value of : is to be determined,

i
it is necessary first of all to multiply -:I-L- by ?%QE . Along the
ordinate AB corresponding to the abscissé, 1.0 a scale for %
is provided and from the origin O radial lines are drawn for dif-
ferent values of %c_; . PFor instence, the line for EE; = 250 (wood)
agrees with the experimental results in Table 3, in which
IEO. = E%é‘%)p‘ = 248 = approXimately 250.
Table 9.

2~ =% 800 } 350 ¢ 30 350 385 ' 400 @ 480

o © (Holz) -~ | . "(Stanl)’ :

7'1 . . . . . . .-

5 = 44.4 : 43.7 54.6 58.9 8l.7 623.8 ;06.8

If, for example, + = 39 = AG end if the line ODE is drawn

then OE = ¢ X G, where ¢ is a constant. The radial line OD
k -
must therefore have a elope corresponding to o= f;—;ﬁ'i . The inter

section point F of line OD and the ordinate AB gives the val-

1 k R
ue of T for which 7'— / —0-=1; i.e., AF = l—— = / £
i1V 0 g ' ' + ko
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E

For- £ = 350, therefore -+ = 4%.7.
Kq i
For other EE— the values are given in Table S8, from which
o . :

the radial lines for the characteristics of different materials can
be easily drawn in Fig. 4.

If the value of & /—Xo_ = OE is once determined by means of

i/ T* E
a proper radial line for a value of %_—'—r AC the line DGH gives
immediately the value -]—}-, as for instance I;]E- = ,81 in the ex~
o ‘o

I ample, this value is then to be inserted in the equation
wP = kg FE% = .81 k,F.
For another value of z'i- = 74 > AF,- corresponding to
ii /;;—QE= 1.5 the line JKLM should be dramn, giving ];1-‘0— =TH =
»323, i.e. mP = ,393 kJF.
When the load wmP, ‘instead of the cross section of the rod,

is known, the process must be repeated in order to determine the

cross sectional dimensions.
THE ELASTIC CURVE AND THE LATERAL DEFLECTION OF THE ROD.

The differential equation of the elastic line, (Fig. B5), from

. which Euler's formila is derived is:
2
- R 9
: i EBJ EJ )

wrere P is any load at all.
This equation is sabtisfied by

v =Bsinwx + C cos w X, (10)

()
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in which B, C and w are constants and are etill to be detemined.
XxX=0 gives y = O, therefore, C = 0. As, however, y must a’sce
=.Q:for x =1, therefore Bsinwi =0, hence wl=1m,
8mord3T .v.... The values 2 1w, 3 7T, etc., ocorrespond to a rod
Dent into several waves by fourfold, ninefold, ........ loads, and
therefore are not to be considered.

Hence, we have:

W=Eandy=Bsinnl{- (11)
1

The elastic curve is therefore a sine curve.
As further, for x = é_, the deflection y = a, then B = a,
y = a sin ‘ﬂ'%‘ and (13)

2 .n-2

gy - - o7 X = o .
d—xg-— alasinnz 12 Y

=4
ay P2 ___T
d}gz EJ Y 13 Y'
Then there follows:
<
Py = I f;’ (13)

In other words, if a deflection of the rod takesplace at all
2 .
c%;g >0 then it can occur only under the effect of a definite

However, the maximum deflection a for x = %- cannot e oa.ldu-—

lated from equation (12) as the equation a = a sin & £ = 3 sin J

, 2 - 2
can be satisfied for any value of a. Henoe, it follows first,
that in case of P < Pj, there is no deflection at all; second,

2
that for a definite load Py = ‘1-1—23-'1, the equilibrium of the inner
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and outer forces is present for any valve of a, and third, tha’
in case of P > P the deflection a will continue t0 increase
until the rod will bresgk and a = o .

This is, nowever, not to be taken literally, for the deflec-
tion of a rod in proportiom to its length cannot excead certain
practical limits. The conclusiong of this investigation apply
tnerefore to comparatively small deflections of the rod and tc¢ rods
which originaglly were perxfectly straight, symmetrical and of uni-
form material. With these reservations, the formls and the con-
clusions drawn therefrom are unobjectionable.

That the deflection, according to Euler, for the load
Py = lf%gi can assume any value, seems astonishing at first, but
is easily explained by the following consideration.

If, at a certain definite deflection a, there is an equilib-
rium between the outer forces and the inner bending moments, and
if the deflection is artificially increased %o 11a3‘then all the
inner stresses and simultaneously the outer bending moments for
every coross-section will be increased n +times. The rod is there-
fore in an indifferent equilibrium. If Py 1is somewhat diminished,
the rod will come tack to its original form, if Py be slightlj
increased, the original small deflection will continue to grow
larger until the rod breaks.

In contrast to the above is the stabte of equilibrium of a hor-
izontal rod supported at the ends and loaded transversally to the

a2xls in which case there is a definite deflection for every load.
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The difference in the two cases is due %o the fact thal, in the
transversally loaded rod the bending moments zre irdependent of ¢l s
deflections while in the axially loaded rods they are proportional
to the deflection.

The conclusion drawn from the discussion of Euler's foxrmula
that an axially loaded rod should not deflect any measurable amount
and that no gradual increase in deflection should correspond to the
gradually inoressing load, is, however, not generally confirmed by
experiments. For instance, Fig. 6 shows the lateral deflection in
relation to the axial load for two steel tubes.

No. I, 304 cm. long, 65 mm. diameter and 1.46 mm. wall thickness.
" II, 294 cm. long, 80.1 mm. diameter and 1.98 mm. wa;l thickness.

It follows from the curves that, although the deflections grow
rapidly with the load, the crippling of the rod does not occur very
suddenly.

This contradiction might be attributed to the fact that the
modulus of elasticity E doeépot remain quite constant as the
stress increases or that either the cross-sections of the rod are
not perfectly symmetrical or the material is not uniform, or also,
thxt the rod was not perfectly straight before the load was applied.
Finally, it is not quite correct to assume that for considerable
deflections the arc eleme&'l:L ds of the rod is equal 0 4x, us-

ing %i% instead of = 3 ‘:x in the derivation of Euler's formula.

The last point seems, however, unessential as the practically

admissible deflection of the rod is slight. Also the variation of
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E is inconsiderable. On the contrary, some bends in the rod be-

fore the test or nonuniformities of the wall thickness (for example,
in a tube) or of the material, are of essential importance.

It ie evident that even a perfectly straight rcd will break
only at a certain definite deflection a. This deflection for large
values of %3 at which the compressive stress is negligible in com-

parison with the bending stress can be calculated in the following

manner:
2
Py =-J%§EJ aP, = kg g, where e 1is the distance of the out-

mogt fiber from the centsrline of the cross-section.

= J_ 13 = k() _?'__2;
a = ko e MREJ T2 E e (14)

, besides of the bending stress, the

e o

For small values of

compressive stress must be considered. As both stresses taken to-

gether should not exceed ky, the bending stress alone equals

ko - kl
In Fig. 1, gi is represented by the distance of the fi val-
o} . o
ue from the x - axis and x " x by the distance from the line
k
for - = 1-
ko
Therefore,
Pp = k F and a Py = (k; - k) g
- - -]
k Fa k e

This equation gives the same values of a as equation (14)

if, as for long rods, k 1in the numerator can be neglected and
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2
P, is taken equal to k F = JoBd .

12
' -]
Subtracting in equation a = G]—;-ﬁ - N 2 the value of lc]il
_ e N
from equation (8).
kXq 12 Ko N2 ,Ll\* .
= (1@ () +(“ }.ﬂ (i, 1} E Qe
1+ _Xo _7'_\2 © |
T E <i y;
k 12 B .
a= AT2 E 3% \.Jf :
5/ (17)
1+ K 1 0® '
g i

Equations (15) and (17) lead further to the following import-

. . . = . 1 . .
ant consideration. If, for a certain value of T the ratio X

k
(¢
is determined according to equation (8) or Fig. 4, vthen the greatest

admissible deflection a is proportional to i-:— . Table 10 gives

=4
e for some solid and thin walled hollow sections.

e
Table 10.
« 2
Cross-geotion - i = & : : oA
. F : : e
:— mate . & : 8%/16 - d = g.135 g
7 4 84 T d’ 16 3 ) .
7 3t b& | & o #/13 _4d _
,%1: T2bd ~ 18 ; g8 s ~-0-16874¢
“ b — :
87, F . 3 2 2
"‘ i o Sl i—§§=9=o.asod
___+_,_, ‘ 8 . d/23 4
-1 33 1lg4°
- = 6d + —6d 2 2
LSRR : < 475 =49 =0.333 4
A4 i 2 5d 8 i/z 3
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In an airplane lateral deflsctiocn of rods can te produced by
vioration or other external causes, and Table 10 shows that the
hollow sectiomed axially-loaded rods can be allowed to deflect
twice as much as the solid sectioned rods. The square section is
4/3 times more advantageous than the circular one, due to the lar-
ger cross—sectional area.

Now, examining the case of an eccentric load, considering at
the same time, instead of a straight rod, a rod having an initlal
bend b, before the load is applied, (See Fig. 7). The curve of
the initial bend is unessential. To simplify the calculations, it
can therefore be assumed that the curve of the initlal bend is simi-
lar to the elastic curve of the rod deflected under the load. II
taen b denotes the initial bend and & the additional elastic

deflection,
5 ) . 2
Ve = —2—y; dy, = dy; Py, = —R_d"y.
a +b a +b a + b
As further '
2 2
d v . S . _E g
d x da x® EJ
where P 1is any load, then
2 N
d y-._.a*tb B . (18)
d x a EJd

This equation is satisfied by

x (19)

y = (a + 2) sin 7
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-‘i—la—=—(a+b)%sinn-’§-=-%2- y (19a)
X
= L. g—?ll: -1 fsin 'n'_x_::. - f_ (lgb)
LS 12 7 17 Yi-

Fith reférénéé to equation (18) we have therefore:

at+bh P . 8 . - _P1*
a EJ 12’a+b m*E J

The elastic deflection however is not a +b but a only

and it depends uwpon b and P.

2
o= 2FL _ _ B2 (20)
T°E J - P1 nEJ
P1®

In the case of an eccentrically loaded rod, the deflection a

depends tnerefore, upon P. For P =90, a= o and for
n°E J
z?.

P=Pk= a = oo,

2
3—§55 = P, is Euler's crippling load. Taking therefore

P = Py, it will be found that

lY

— (21)

a=>b

For different values of y +the values of are giv-

O'j
-2

§
-

en in Tahle 11.
Table 11.

:1.Q: 0:9:0.8:0.7 : 0.6 : 0.5 O 4 :0.5 -0 2 0.1 :0.0

a
-

:m§9040233:1.5110 10.667:0. 4380350 .0+ 111 :0.000

oy -2
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The eccentricity b cannot be easily measured as it is com-
posed not only of the real eccentricity of the load, bubt alsc of the
lack of uniformity of the wall thickness and ths material. If, how-
ever, this seeming (total effective) eccentricity be calculated for
one of the experimental results in Fig. 6 {(curve 1 gives b = 1.1 om.
and curve II as 1.37 cm.) and then for the various loads the corres-—
ponding de:lecfions a figured out (in Fig. 6 the various cases axe
mamked_by_circles) it will be seen that the calculations agree sur-
prisihgly well with the test results. This proves the stabement that.
the regular increase of deflection with the load is due mainly %o
lack of symmetry and uniformity of the »od, both in dimensions and
material, and that the effect ocan be reproduced by the assumption

of an eccentriec load.

DETERMINATION OF ADMISSIBLE LOAD WITH REGARD TO ECCENTRICITY.
1. For relatively slender rods, in whioch the mean compressive
stress k 1is negligible in comparison with the bending stress

ko — k, the following relations are approximately true:

P(a +Db) =k £ (22)
a=2t - b and with equation (20) (23)
ko J b P12

0 L .p=

P & ° " TFEJ -P1°

Pk £ 1®+bn”E ) =k, & mEJ

2 -
P = 1 E‘*J 1 3 (24)
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3. For stouter rods, where the mean compressive stress should

be considered:

P (a +b) = (kg - k) g- (25)
Substituting k = £ and from the equation (20)
<
a=-—=>2Fb — and 1t will e found:
WEJ-P1 :

T E J J_?2 J

P o o= =k = - = =

“ME J - P17 e F e

2

T®E T J

P - P /lf._a_u.,.kop.;_ __.E__LQE.\_-;_M_
\ /

1® 12 1
1 fE J .. x F1? Feb
P=——[f1 +-2 +
3 1 [}1 S mEJ | J
F1® F 4 k. F 1 -
Cx) f(1+ Sl e°> (26)
o w°E J J TI°E J

This formula has two roots and if agpplied td the steel ture
No. II in Fig. 6, where 1 = 3% om.; F = 4.9 cm®; J = 37.3 cné;
ko = 5300 kg/em®; E = 2,000,000 kg/cm® and b = 1.37 om., the
vuckling load will be found either P, = 33,375 kg., and the corres-—
pending elastic deflection according to equation (30)
a; = - 1,705 em. or E = 6,635 kg. and ap, = 4.14 cm.

P, and a, do not practically come into guestion as the deflec-
tion a, is in a direction opposing the initial vend b and k

wculd be greater than k,. Therefore, only the negative sign of tShe

root in equation (26) should be used.



Equation (28) can be used in order to determine the buckling
load P according to the idea of Mueller-Breslau* assuming eccen-
tricity of the rod. The additional deflection a corresponding -
to the load P is given by equation (230); the total deflection is

therefore:

2 2
a+3=p —FEb — +p=b TEJ (87)
. E J - Pl TEJ -P1

and the bending stress is oObtained from equation (35) %o

P {a +b)e

k -k, = .

(28)

The foregoing calculation becomes very clear when the moments
M, and M; of the outer and inner forces are drawn in relation to
the deflection a, for exaxple, for the weakest section, as in

Fig. 7.

¥, =P (a + D) (29)
d?y déy
W = -5 - dle EJ (30)

in which, according to equations (19a) and (19D)

@’y &y 2
for x =t &y, _ _ ..
2 ax® ax° &7
- 2w
and M; = a T2 d (31)

-LB
The moments M, and Mi are represented in Fig., 7 by full
lines. Their point of intersection corresponds to a deflection a
at which the immer and the outer forces are in equilibrium. A

smaller load P1 < P would have a corresponding moment line L S

*Mueller (Breslau), Die neueren Methoden der Festigkeitlehre. ==
Published by A. Kroener, Leipzig, 1913, Chap. VI, p.360.
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clotted and a smaller a similarly for I; = P, there will “e 13
line M_. and a greater a and a +b. If P increases so muckh
that the line M_, Dbecomes parallel to M;, a will be equal %o

2 |
& and P=Pg = -EJd . If P is increased still further, then

The line MN_, will interseot the line M; produced so that a
becomes negative. This value of =-a corresponds $0 the unused
root of equation (36).

The foregoing ought to prove that although the bend a + b,
in the case of an eccentrically loaded rod, grows rapidly with the
increase of the load, the break does not occur suddenly. On the
other hand, it séems possible to eliminate in a compression test,
by means of a proper arrangement, the always present slight eccen-
tricity in which all the uwnuniformities of wall thickness and ma~
terial are included. Then for a definite load (namely, Euler's
crippling load Py = Ei%éﬂi, there must be an equilibrium for any
deflection. This means that the ourves I and II, Fig. 8, should be
vertical lines P, having the same value for any deflection.

This apparatus may, for example, consist of two spherical com-
pression blocks, with respect to which the ends of the tube, pro-
tected by end plates, may be laterally displaced by means of ad-
Justing sorews until the crippling load reaches a maximum.

The author had such a testing device made. The tubes to be
tested are closed on both ends by plane pressure plates, and in the
machine are placed two compression blocks whose knife edges, rounded

off to 5 mm, radius, are adjusted accurately parallel. On both

sides of the knife edges are adjusting screws, by means of which the
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ends of the . tube may be adjusted laterally with reference to the
knife edges,; thereby avoiding the turning of the tube about its
aXls, as well as permaﬁent deflections. In the experiments, tests
were made upon the strut, a steel tube of 8 mm. diameter, 2 mm.
wall thickness, and 3030 mm. length, with apparent eccentricities

varying :from +12 mm. to -3.6 mm. While the calculation gives Euler's

buckling load P = ¥ 3’15036220 X 57-3 - 8400 kg., it was found
that the tube could stanq a load of 9500 kg. at an eccentricity

6 = -2.6 mm. A% 9600 kg., without any increase of the load, the de-
flection rose immediately from -1.2 mms. t0 a very high value, that

would have led to collapse (See Table 13).

TABLE 13.

Deflections "a" in mm. at Various Eccentricities.
\

Eccen- :
tricity:
C : : : : : : : : : : : :
in mm. :1000:3000: 30C0 : 4000 : 5000 : 8000 : 7000 : 8000 : 8500 : 3000 : 9500 : 9600
13 : 32.1: : : : : : : : : :

Loads in kg.

10 : 1.7:

8. 1.4 : : : : : : :

6 : 1.1: 2.8: 1 : : :

4 : 0.9: 3.4:

2 ¢ 0.5: 1.3: 2.4: 4.0: : : : : :

O : 0.1l: 0.3: 0.9: 1.8: 3.7: 4.5: : Tt : :

-2-5 . 0.0: 0-0: _O-O:.O-O: 014: Oo'].: 0‘2: OIS:

-2.6 : 0.0: 0.0: 0.C: 0.0: 0.0: 0.0: 0.0: 0.0:-0.1:-0,3:~1.3:Buck-
ling.
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It follows from these tests that a perfectly straight rod; in
agreement with Euler's theory, does not deflect at all under lcads
below Euler's crippliing load, and that after their ultimate load :s
reached, there is an equilibrium befween the outer and the inrner

forces for any deflection within the elastic limit of the material-

SUMMARY .

The formulas hitherto employed for calculation of rods subject
to compreésion, are usually of value only for stout or for slender
rods. They do not cover, as a rule, the whole range of rod lengths, -
or they give too great a safety factor for short and moderately
large rods. Therefore, a new empirical formula, equation (8), has
been developed, that holds good for any length and any material of
the rod, and agrees well with the results of extensive strength
tests. To facilitate the oaloulations, three tables are included,
giving the crippling load for solid and hollow sectioned wooden
rods of different thickness and length, as well as for steel tubes
manufactured according to the standards of Army Air Service Inspec-
tion (Idflz). PFurther, a graphical method of calculation of the
Dreaking load is derived (Fig. 4) in which a single curve is employ-
ed for determinagbion of the allowable fiber stress.

Finally, the theory is discussed of the elastic curve for a rod
subject to compression, according to wﬁioh no deflection occurs,
and the apparent contradiction of this conclusion by test results is
attributed to the fact that the rods under test are not perfectly
straight, or that the wall thickness and the material are not uni-
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form. Under the assumption of an eccentric rod, having a slight
initial hend according to a sine curve, a simple formula for $ts
deflection is derived, which shows a surprising agreement with test
results. From this a fuxrther formula is derived for the determi-
nasion of the allowable load on an eccentric rod. The resulting
relations are made clearer by means' of a graphical representation
of the relation of the wmoments of the outer and inner forces (Fig.
7) to the deflection, and through the determination of equilibrium

petween moments.

Translated by F. ¥. Pawlowski,
University of Michigan.
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